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REMARK  In Example 8, note that the position function has the form
1
(1) = 'Z‘gt2 + ot + 5

whe-re 8 = =32, vy is the initial velocity, and s is the initial height, as presented
earlier in Section 3.2,

Before you begin the exercise set for this section, be sure you realize
!:hat one of the most important steps in integration is rewriting the integrand
in a form that fits the basic integration rules. To further illustrate this point,
we list several additional examples in Table 5.1.

TABLE 5.1
Given Rewrite Integrate Simplify
J 2 dx n y12 v c
Sa 1 X2 4
Va ZJx dx 2(1/2) +C 4x
I £ 1,2,
f(t2+1)2dt f(t4+2t2+1)dt §+2(§)+t+c PP C
B+3 x2 x~1 1 3
-2 fudl r a2 B
f o dx f(x+3x ) dx 2+3(_1)+C >* x+C

Valx — 4) dx (x4 — 4x13) dx il 4(i/3) +C §x4’3(x -N+C€
7/3 4/3 7

EXERCISES for Section 5.1

In Exercises 1-6, complete the table using Table 5.1 In Exercises 7—26, evaluate the indefinite integral and
as a model, check your result by differentiation.
Giv j Simplij
Jven  Rewrite  Integrate implify 1. f o+ 2) dr 8. f (2 = 2x + 3) d
L j V;
T 9.f(x3/2+2x+1)dx 10.[(\/}+L)dx
2 fl 2Vx
|5k
g 11.[\3/de lZ.J(W+l)dx
3 f !
T dx
$Vx 13. -1—3dx 14. f —lzdx
X X
4 f 302 + 3) 15. f 4—1x2- dx 16. f @x + x71?) dx
SJ'L 2+x+1 x2+1
P 7. | = 18. f 7 dx
6 | 1
J’@dx 19. I(x + D@Bx — 2)dx  20. f (22 = 1)2 dt
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2
21.J" +2

2 22. [ (1 =2y + 3y)dy
3. .[yZV; dy 24, f (1 + 31)e2 dr
25. fdx 26. J’3dt

In Exercises 2730, the graph of the derivative of a
function is given. Sketch the graphs of two functions

that have the given derivative. (There is more than one
correct answer.)

27.
y 2. y
it N
2_._
1+ Nl
—-2-1 123 7 I A S
-2 ol
-3 5l
29. ¥ 30. y

In Exercises 31—34, find the equation of the curve,
given the derivative and the indicated point on the curve.

dy
3.2 - 2x -1 2. 2=20-1)

y

Y

a n

b _3x2 -1 4.9 _1
33. dx 3x dx~ —F:-x)o
_$_ y
©, 2) J\/(1,3)
X ~+

In Exercises 35-38, find y = f(x) satisfying the gi,
conditions.

35. f'"(x) =2, '@ = 5,f(2) = 10
36. f"(x) = x2,f'(0) = 6,f(0) =3

37. f'x) =x¥2, '@ = 2,f(0) =0
38. f'(x) = x732,f'(1) = 2, f(9) = —4

In Exercises 39—43, use a(t) = —32 ft/s? as the accel
eration due to gravity. (Neglect air resistance.)

39. An object is dropped from a balloon that is stationary
at 1600 feet above the ground. Express its height above
the ground as a function of z. How long does it take
the object to reach the ground?

40. A ball is thrown vertically upward from the groumi
with an initial velocity of 60 feet per second. How g
will the ball go?

41. With what initial velocity must an object be 0¥
upward (from ground level) to reach a maximumbeigh
of 550 feet (approximate height of the Washing!™
Monument)?

42. Show that the height above the ground of a8 °"‘“;
thrown upward from a point s, feet above me.w:ﬂu
with an initial velocity of v, feet per second 5 €
by the function

f(2) = =162 + vyt + s,. [
; 16 ¢
43. A balloon, rising vertically with a velocity %

per second, releases a sandbag at the instant ¥
balloon is 64 feet above the ground. 1 the D
(a) How many seconds after its release ¥
strike the ground? 9
(b) With what velocity will it reach the growd

. om
44. Assume that a fully loaded plane starting fr&c ¥

a constant acceleration while moving down

o
g

\
|
|
|
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In the next example we look at a region that is boundeq by the
(rather than the x-axis). Y

EXAMPLE 8 A region bounded by the y-axis

l©, 0)
FIGURE 5.14

EXERCISES for Section 5.2

SOLUTION

Find the area of the region bounded by the graph of f(y) = 2
= (1, 1) for 0 = y < 1, as shown in Figure 5.14.

—

and the Y

When f is a continuous, nonnegative function of y, we still can uge the
basic procedure illustrated in Example 6. We partition the interva] [0, iy
n equal subintervals, each of width Ay = 1/n. Using the upper endp(,inI
¢; = i/n, we obtain the following.

area = lim 2 f(c)Ay = lim 2

n A\ 2 n
i 1 .1
=) (=) =lim 5 X
n—o i=1 <n) (n) n—oo n3 i=1 :

im nn + 1)2n + 1)

=,}_.w 6n3
S S TS T
_,1112(3+2n+6n2)"3 =

In Exercises 1-8, find the given sum.

5 6
1. 2 @Qi+1) 2. 2121'
i=1 i=
A 31
3. ;,Zo——_k2+l 4.1_231.
4 10 3
s'kzlc 6',,21n+1

[G— 12+ G+ 1)
1

-
7. 2
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5

8. > (k+ Dk —3)

k=2

In Exercises 9—18, use sigma notation to write the given

sum.
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In Exercises 19-24, use the properties of s.gn:l '
tion and summation formulas to evaluate the 8

20 10
19. Zl 2i 20. 2 i@+ 1)
20 O
2 3G -y 2. 2 2 ~3
e i=1
- 5y LR
o1 Vo 24. Zl(l -

e



o 25 30, find the limit of s(n) as n — .
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prcises 31-30, USE the properties of sigma nota-
::mtofmdaformula for the given sum of n terms. Then

st the formula 10 find the limit as n — .

z 2i\%/2
Lin 356 = 1 32,1‘1301”21( n)(n)

gz = 1 n
n

vin)
w3102 wmE (90

nbercises 37-42, use the upper and lower sums to
Biimate the area of the given region using the indi-
d number of (equal) subintervals.

"= Vs 38.y=Vx+1

|
|y, . x
—

2
1<1+1<—)<
n
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43. Consider the triangle of area 2 bounded by the graphs

ofy=x,y=0,and x = 2.

(a) Sketch the graph of the region.

(b) Divide the interval [0, 2] into n equal subintervals
and show that the endpoints are

o<if?) < <a- v <)

(c) Show that s(n) = il [(i = 1)(%)](%)

(d) Show that S(n) = é:l [i (%)](%)

(e) Complete the following table.

n 510 | 50 | 100

s(n)
S(n)

(f) Show that lim s(n) = lim S(n) = 2.

n—wo

. Consider the trapezoid of area 4 bounded by the graphs

ofy=x,y=0, x=1,and x = 3.

(a) Sketch the graph of the region.

(b) Divide the interval [1, 3] into n equal subintervals
and show that the endpoints are

crra-n<iend)

(c) Show that s(n) = ; [1 - 1)(%)](%)
(d) Show that S(v) = ; [1 + ,G)](%)

(e) Complete the following table.

. |5]10]50] 100

s(n)
S(n)

(f) Show that hm s(n) = hm S(n) =
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~

a

FIGURE 5.21

THEOREM 5.10
PRESERVATION OF INEQUALITY

If f and g are continuous on the closed interval [a, b] ang <

g(x) for a = x =< b, then the following properties are true. Firg; the f") b

the region bounded by the graph of f and the x-axis (between 4 and Loy
be nonnegative; second, this area must be less than or equal 1o g,
by the graph of g and the x-axis (between a andareﬂ
) dg
Wlng

the region bounded N
shown in Figure 5.21. These two results are generalized in

. ; . e fo]
theorem. (A proof of this theorem 1s given 1n Appendix A)) =

1. If f is integrable and nonnegative on the closed interval [a, b], thep

0= Lbf(x) dx.

2. Tff and g are integrable on the closed interval [a, b] and f(x) = g(x) for eyey
x in [a, b], then T

Lbf(x)dxs Lb g(x) dx.

EXERCISES for Section 5.3

In Exercises 1—10, set up a definite integral that yields
the area of the given region. (Do not evaluate the

integral.)

1. fx) =3

fﬂ:

3
2+

1+

2. f(x) =4 — 2x

5. fx) =4 — x2 6. f(y) = (y — 27

-4 -2 2
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In Exercises 11-20, sketch the region whose area is
indicated by the given definite integral. Then use a geo-
metric formula to evaluate the integral.

11. er 12.J’ 4 dx
0 -a
* 14 rxdx
13.Lxdx “ o 2
2 5
15.L(2x+5)dx 16.L(5—x)dx
1 a
m [ 0=l 8. [ @Il as

3 r
19. f V9 — x2 dx 20. f Vr2 — x2dx
_3 -r

21. Given [* f(x) dx = 10 and [ f(x) dx = 3, find the
following.

7 0
@ fof(x) dx () Lf(x) g

5 5
© J;f(x)dx ()] fo 3f(x) dx

22. Given [? f(x) dx = 4 and [¢ f(x) dx = —1, find the
following.

6 3
(@) L () dx ) Lf(x) dx

4 6
(©) Lf(x)dx d) J; =5f(x) dx

23. Given [* f(x) dx = 10 and J§ g(x) dx = -2, find the
fo]lowing.

6 6
(a) J; [f&) + g0l dx  (b) J; [8(x) = f(0)] dx

6 6
(c) L 2g(x) dx (d) J; 3f(x) dx

« Given [! f(x) dx = 0 and J! f(x) dx = 5, find the
following.

0 1 0
@) Lf(X)dx (b) fof(x)dx— Lf(x)dx

1 1
© L 3f(x) dx @ fo 3f0) dx
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In Exercises 25—30, evaluate the definite integral by
the limit definition.

10 3

25. 6 dx 26. j x dx
4 -2
1 1

27. j x3dx 28. J’o x3 dx
-1
2 2

29, fl &2+ 1) dx 30. L 4x? dx

In Exercises 31 and 32, use Example 1 as a model to
evaluate the limit
lim 2, f(c)Ax;

n—o i=1

over the region bounded by the graphs of the equations.

3L fo) = Vx,y=0,x=0,x=2
[Hint: Let ¢; = 2i%/n?.]

2. f0)=Va,y=0,x=0,x=1
[Hint: Let ¢; = i3/n’.]

In Exercises 33 and 34, express the given limit as a
definite integral on the interval [a, b] where ¢; is any
point in the ith subinterval.

Limit Interval

33. lim 2, (3¢; + 10)Ax;
llall—0 i=1

34. lim D 6¢c(4 — c)?Ax;  [0,4]

lal-0 i=1

(-1, 5]

Write a computer program or use a spreadsheet to
approximate a definite integral by using the Riemann
sum

glf(c,-)Axi

where the subintervals are of equal width. The output
should give three approximations of the integral where
¢; is the left-hand endpoint, midpoint, and right-hand
endpoint of each subinterval. Denote these by L(n),
M(n), and R(n), respectively. In Exercises 35 and 36,
use the program or spreadsheet to approximate the def-
inite integral and complete the table.

n |4]|8|12]|16|20

L(n)

M(n)

R(n)

2 3
35.Ix\/3—xdx f 5
0 : 0 o2+ 1%
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Now{) from. the M_eaﬂ Value Theorem for Integrals, we know there exists a
AUMYer ¢ in the interval [x, x + Ax] such that the integral in the above

eXpression is equal to f(c)Ax. Moreover, since x < ¢ < x + Ax, it follows
that c — x as Ax — 0, Thus, we have

' . 1
F'&) = lim [E f(c)Ax] = lim f(c) = f(o.

REMARK  Using the area model for definite integrals, we can view the approximation

x+Ax
FAx = f Yy

as saying that the area of the rectangle of height f(x) and width Ax is approximately
;cqual to the area of the region lying between the graph of f and the x-axis on the
interval [x, x + Ax], as shown in Figure 5.29.

f()

— t
i X+ a A Note that the Second Fundamental Theorem of Calculus tells us that if
foAx = J' f@) at a function is continuous, then we can be sure that it has an antiderivative.
* This antiderivative need not, however, be an elementary function. (Recall the
FIGURE 5.29 discussion of elementary functions in Section 1.5.)

EXAMPLE 6 Applying the Second Fundamental Theorem of Calculus

Evaluate
dix j V2 + 1 dt.

0

SOLUTION

Note that f(f) = Vt? + 1 is continuous on the entire real line. Thus, using
the Second Fundamental Theorem of Calculus, we can write

X
%L\/t2+1dt=vx2+1_ =
EXERCISES for Section 5.4
2/(3 1
In Exercises 124, evaluate the definite integral. 9. L (;i - 1) dx 10. JO Gx® — 9x + 7) dx
1 2 5
L L 2x dx 2. j73dv 11. ﬁ (5x* + 5) dx 12. fsvvs dv
2 —_
0 5 1 2 5
3.Il(x—2)dx 4.j (—3v + 4) dv 13. L(\’ﬁ—z)dt u. | \/;dx
- 2
5 l 3 Yu—2 -1 1
Je-va 6. fo G +x—2) dr 15. fl o du 16. L (u - Iﬁ) du

1 1 1 _ -\/_ 2
7 L(Zt— 12 dr s. L - 91) dt 17. fo.x . % ix 18. L @-nVidt
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0
19. f_l (113 — 28) gt 20. f AR Function Interval
' ;8 2Va 37. f(x) = —x2 + 4x [0, 3]
21- f—l lxl dx 22. j-o '2x - 3' dx 38- f(x) = ‘\/; [l, 9]
4
23. f [x2 — 4x + 3| dx 24 J“ 3| gx In Exercises 39—42, sketch the graph of the o
) . pe . . I
o -1 23] tion over the specified !nterval. Find the avgr:eg fung.
. of the function over the interval and all valyeg of Valy,
In Exercises 25—30, determine the area of the indicated the function equals its average value. Why,
region.
25 2 Function Interval
.y=x-—x 26. =_2+2x+3
: ’ vx 39. fx) =4~ x? [-2, 2]
' x2+1 1 "
40‘ f(x) = x2 2’
T 41. fo) =x — 2Vx  [0,4]
1
=—723 0,2
42‘ f(x) (x — 3)2 [ ]
1 x - x In Exercises 43—48, (a) integrate to find Fas a function
of x and (b) demonstrate the Second Fundamenta| The,.

rem of Calculus by differentiating the result of part (s)

X

43. F(x) = E (t+2)dt 44 F(x) = L K2+ )a

45. F(x) = L N/t dt 46. F(x) = L Vidt
47. F(x) = fl ;lidt 48. F(x) = L 72 gy

In Exercises 49—52, use the Second Fundamental
Theorem of Calculus to find F'(x).

49. F(x) = fz (2 — 2t + 5)dt

50. F(x) = fl 7 dt

51. F(x) = f_l Vit + 14t
In Exercises 31—34, find the area of the region bounded w g
by the graphs of the given equations. 52. F(x) = fl ari%
= 2 = = = O . -
g; ;’ = _:;x+ ‘i/%’ i = g’ i _ i’ ; = 53. The volume V in liters of air in the lungs durié adzl
. == ’ ’ ’ . B . ]
3. y=x*+xx=2y=0 second respiratory cycle is approximated by th¢ "
34, y= —x2+3x,y=0 V = 0.1729¢ + 0.15222 — 0.03747°
4
. where ¢ is the time i . Approximate the 2/
In Exercises 35—38, find the values of ¢ guar_anteed by volume of air inihz iﬁf,‘;dgmg one cycle-
the Mean Value Theorem for Integrals for the given func- 54. The velocity v of the flow of blood at 2 distance ’ fror
jven Y

tion over the specified interval. the central axis of an artery of radius R is g

Function Interval v = k(R? — r?)

_ Y

35. f(x) = x° [0, 21 where k is the constant of proportionaliy. FH:; he

36. f(¥) = % (1, 3] average rate of flow of blood along 2 Stioﬂ-)
& artery. (Use zero and R as the limits of inte&™
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f@) =2 — 42 + 6x

FIGURE 5.32

EXERCISES for Section 5.5

EXAMPLE 10 Integration of an odd function

Evaluate

2
f 5 — 4x3 + 6%) dx.
5

SOLUTION

By letting f(x) = x° — 4x3 + 6x, we have
f(=x) = (=% — 4(—x)® + 6(—x) = —x5 + 4x3 — 6x = ~f).

Thus, f is an odd function, and since [—2, 2] is symmetric about the Origip
we can apply Theorem 5.17 to conclude that ,

2
5 3 = 0.
J_2 (xS —4x3+6x)dx=0 -

REMARK From Figure 5.32, we see that the two regions on either side of the >
axis have the same area. However, since one lies below the x-axis and one lies above,
integration produces a cancellation effect. (We will say more about finding the are
of a region below the x-axis in Section 6.1.)

In Exercises 1—4, complete

and du for the given integral.

[rewpgma  w=sw =g

=

s f (5x2 + 1)>(10x) dx
2. fxz\/x3 + 1dx

x
vt
4. J- (3 + 3)3x2dx

the table by identifying u 13. J’(l—i%)—z dx 14. J’(16+2x3)2dx
2
15. f%dx 16. %dx
17. (x2—+";;1:3—)2 dx  18. %;de
1. | (1 + lt)a(%) a 20, f (?’—i)—zdx
21. I\;ﬂdx 22, J-E—-\l/;dx
25. f tz(t - gt) dt 26. f (%3 + Z%) dat
27. f © - »Vydy 28. f 2my(8 =y ¥

In Exercises 5—28, evaluate the indefinite integral and
check the result by differentiation.

5. f A + 2x%2) dx
7. J’ VO = %2 (—2x) dx
9. f x2(x3 — 1)* dx

11. JSx\/"' 1 — x2dx

6. J’ x2 — 1)3(2x) dx
8. j(l — 2x2)3(—4x) dx
10. J’x(4x2 + 3)3 dx

12. J.u3Vu“ + 2 du

In Exercises 29—38, evaluate the indefinite integral %
the method shown in Example 5.

29-fx x + 2dx SO.Ixﬁmdx

31.fx2\/1—xdx 32.fx3\/§'+’2d"
2 -1
33.J'x\1 J’2x 1
T ol BV
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0 2
-Xx
_———dx (a)f x? dx (b)f x? dx
ﬁ-[(x+1)—Vx+l —22 ;2
3. Jt\f*/t’ﬂd; © J; —x2dx (d) f-z 3x2% dx
52. Find the equation of the function f whose graph passes
x N — .
17. Jﬁ dx 38. f @+ DV2 —xdx through the point (0, %) and whose derivative is
o o) =xV1 - 22
) L 53. A lumber company is seeking a model that yields the
In Exercises 39-50, evaluate the definite integral. average weight loss W per log as a function of the
1 1 number of days of drying time ¢. The model is to be
39. I_l x(x? + 1) dx 40. L xV1 = x? dx reliable up to 100 days after the log is cut. Based on
4 1 2 3 the weight loss during the first 30 days, it was deter-
——dx 42, f —dx mined that '
41'I0\/2x+1 0 V1 + 2x? ©
9 1 L dw 12
———dx 44.fo4+ 2 dx —_— = —
£ ]1 Vad + V) 0 S dt  \i6r + 9
‘a-DVZ—xdx 46 g function of 7. Note th ht 1
45. J' - - X . f — (a) Find W as a function of ¢. Note that no weight loss
17 01 e +11 occurs until the tree is cut.
47. f xVx —3dx 48. J _— & (b) Find the total weight loss after 100 days.
37 06 Vit Vatl 54. The marginal cost for a certain commodity has been
9. L Va+1dx 50. f_z XVx + 2 dx determined to be
dac 12
51. Use the fact that L. VN
) e V12x + 1
8
L x2dx = 3 (a) Find the cost function if C = 100 when x = 13.
(b) Graph the marginal cost function and the cost func-
to evaluate the following definite integrals without tion on the same set of axes.

using the Fundamental Theorem of Calculus.

5.6 Numerical Integration

The Trapezoidal Rule = Simpson’s Rule

Occasionally, we encounter functions for which we cannot find antiderivatives.
Of course, that may be due to a lack of cleverness on our part. On the other
hand, some elementary functions simply do not possess antiderivatives that
are elementary functions. For example, there is no elementary function that
has either of the following functions as its derivative.

3

VaiVi-x V1i-x*

If we wish to evaluate a definite integral involving a function whose
antiderivative we cannot find, then the Fundamental Theorem of Calculus
cannot be applied, and we must resort to an approximation technique. We
describe two such techniques in this section.

The Trapezoidal Rule

One way to approximate a definite integral is by the use of n trapezoids, as
shown in Figure 5.33. In the development of this method, we assume that f

Fpoaom. o s is continuous and positive on the interval [a, b], and thus the definite integral
ot T J? f(x) dx represents the area of the region bounded by the graph of f and
FIGURE 5.33 the x-axis, from x = a to x = b.
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